Archive for the ‘Space’ Category

India’s maiden moon mission which terminated prematurely is now showing results which support’s ISRO’s claim of mission success.

Moon Chandrayaan-1, India’s mission to moon has found damp soil which confirms the existence of water near the polar regions of the moon. The Royal Astronomical Society (RAS) calls this as a major breakthrough that international space scientists were waiting for in order to kick start the moon exploration program again.

The discovery was made using a Moon Mineralogy Mapper (M3) instrument built by NASA to go onboard Chandrayaan-1. It is being thought that considerable deposits of water could be available around the poles of the moon. Speculations are on that moon has 1 litre of water in every tonne of soil.

This can be a very important discovery for the future of space missions as the moon can now serve as a base for the future deep space explorations. It is relatively easy to extract oxygen from water molecules and this oxygen can be useful to sustain life on moon for longer durations or to fuel the long distance rockets. Also building a space station can be relatively cheaper as compared to building and sustaining the International Space Station (ISS) which is essentially a spacecraft suspended in space. But on the other hand the conditions on Moon are pretty hostile, so techniques to survive and sustain research labs on Moon can help us in a longer run to learn how to handle some of the challenges we face while moving into deep space.

The astronauts from Apollo missions brought back samples of rock which showed some traces of water, however it was considered to be contamination from Earth as the containers in which they were brought had leaked and considering the bone dry nature of rocks from Moon they would have a greater affinity to absorb moisture from atmosphere.

NASA’s Cassini spacecraft which passed by Moon in 1999 on it’s way to Saturn provided signals showing detection of water/hydroxyl. The Cassini data shows a global distribution of water signal with the stronger signals received from the poles.

The Deep Impact spacecraft, as part of its extended EPOXI mission and at the request of the M3 team, made infrared detections of water and hydroxyl as part of a calibration exercise during several close approaches of the Earth-Moon system en route to its planned flyby of comet 103P/Hartley 2 in November 2010.

The signals from three different instruments on board Chandrayaan-1, Cassini and Deep Impact Spacecraft answers questions that scientists have been long looking for.